The Diurnal Logic of the Expression of the Chloroplast Genome in Chlamydomonas reinhardtii

نویسندگان

  • Adam D. Idoine
  • Alix Boulouis
  • Jens Rupprecht
  • Ralph Bock
  • Frederik Börnke
چکیده

Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS) by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell "waking up" from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous fluctuations of DNA topology in the chloroplast of Chlamydomonas reinhardtii.

DNA supercoiling in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii was found to change with a diurnal rhythm in cells growing in alternating 12-h dark-12-h light periods. Highest and lowest DNA superhelicities occurred at the beginning and towards the end of the 12-h light periods, respectively. The fluctuations in DNA supercoiling occurred concurrently and in the same ...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii.

Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Ch...

متن کامل

High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation.

The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014